Source code for begin.algorithms.mas.graphs

import torch
import torch.nn.functional as F
from begin.trainers.graphs import GCTrainer

[docs]class GCTaskILMASTrainer(GCTrainer): def __init__(self, model, scenario, optimizer_fn, loss_fn, device, **kwargs): """ MAS needs `lamb`, the additional hyperparamter for the regularization term used in :func:`afterInference`. """ super().__init__(model.to(device), scenario, optimizer_fn, loss_fn, device, **kwargs) self.lamb = kwargs['lamb'] if 'lamb' in kwargs else 1.
[docs] def inference(self, model, _curr_batch, training_states): """ The event function to execute inference step. For task-IL, we need to additionally consider task information for the inference step. Args: model (torch.nn.Module): the current trained model. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the inference results, such as prediction result and loss. """ graphs, labels, masks = _curr_batch preds = model(graphs.to(self.device), graphs.ndata['feat'].to(self.device) if 'feat' in graphs.ndata else None, edge_attr = graphs.edata['feat'].to(self.device) if 'feat' in graphs.edata else None, edge_weight = graphs.edata['weight'].to(self.device) if 'weight' in graphs.edata else None, task_masks = masks) loss = self.loss_fn(preds, labels.to(self.device)) return {'preds': preds, 'loss': loss}
[docs] def afterInference(self, results, model, optimizer, _curr_batch, training_states): """ The event function to execute some processes right after the inference step (for training). We recommend performing backpropagation in this event function. MAS performs regularization process in this function. Args: results (dict): the returned dictionary from the event function `inference`. model (torch.nn.Module): the current trained model. optimizer (torch.optim.Optimizer): the current optimizer function. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the information from the `results`. """ loss_reg = 0. for name, p in model.named_parameters(): l = self.lamb * training_states['importances'][name] l = l * ((p - training_states['params'][name]) ** 2) loss_reg = loss_reg + l.sum() total_loss = results['loss'] + loss_reg total_loss.backward() optimizer.step() return {'_num_items': results['preds'].shape[0], 'loss': total_loss.item(), 'acc': self.eval_fn(self.predictionFormat(results), _curr_batch[1].to(self.device))}
[docs] def initTrainingStates(self, scenario, model, optimizer): return {'importances': {name: torch.zeros_like(p) for name, p in model.named_parameters()}, 'params': {name: torch.zeros_like(p) for name, p in model.named_parameters()}}
[docs] def processAfterTraining(self, task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states): """ The event function to execute some processes after training the current task. MAS computes importances and stores the learned weights to compute the penalty term in :func:`afterInference`. Args: task_id (int): the index of the current task. curr_dataset (object): The dataset for the current task. curr_model (torch.nn.Module): the current trained model. curr_optimizer (torch.optim.Optimizer): the current optimizer function. curr_training_states (dict): the dictionary containing the current training states. """ super().processAfterTraining(task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states) importances = {name: torch.zeros_like(p) for name, p in curr_model.named_parameters()} train_loader = self.prepareLoader(curr_dataset, curr_training_states)[0] total_num_items = 0 for i, _curr_batch in enumerate(iter(train_loader)): curr_model.zero_grad() curr_results = self.inference(curr_model, _curr_batch, curr_training_states) (torch.linalg.norm(curr_results['preds'], dim=-1) ** 2).mean().backward() curr_num_items =_curr_batch[1].shape[0] total_num_items += curr_num_items for name, p in curr_model.named_parameters(): curr_training_states['params'][name] = p.data.clone().detach() importances[name] += p.grad.data.clone().detach().abs() * curr_num_items for name, p in curr_model.named_parameters(): curr_training_states['importances'][name] += (importances[name] / total_num_items) print(name, torch.std_mean(curr_training_states['importances'][name]))
[docs]class GCClassILMASTrainer(GCTrainer): def __init__(self, model, scenario, optimizer_fn, loss_fn, device, **kwargs): """ MAS needs `lamb`, the additional hyperparamter for the regularization term used in :func:`afterInference`. """ super().__init__(model.to(device), scenario, optimizer_fn, loss_fn, device, **kwargs) self.lamb = kwargs['lamb'] if 'lamb' in kwargs else 1.
[docs] def afterInference(self, results, model, optimizer, _curr_batch, training_states): """ The event function to execute some processes right after the inference step (for training). We recommend performing backpropagation in this event function. MAS performs regularization process in this function. Args: results (dict): the returned dictionary from the event function `inference`. model (torch.nn.Module): the current trained model. optimizer (torch.optim.Optimizer): the current optimizer function. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the information from the `results`. """ loss_reg = 0. for name, p in model.named_parameters(): l = self.lamb * training_states['importances'][name] l = l * ((p - training_states['params'][name]) ** 2) loss_reg = loss_reg + l.sum() total_loss = results['loss'] + loss_reg total_loss.backward() optimizer.step() return {'_num_items': results['preds'].shape[0], 'loss': total_loss.item(), 'acc': self.eval_fn(self.predictionFormat(results), _curr_batch[1].to(self.device))}
[docs] def initTrainingStates(self, scenario, model, optimizer): return {'importances': {name: torch.zeros_like(p) for name, p in model.named_parameters()}, 'params': {name: torch.zeros_like(p) for name, p in model.named_parameters()}}
[docs] def processAfterTraining(self, task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states): """ The event function to execute some processes after training the current task. MAS computes importances and stores the learned weights to compute the penalty term in :func:`afterInference`. Args: task_id (int): the index of the current task. curr_dataset (object): The dataset for the current task. curr_model (torch.nn.Module): the current trained model. curr_optimizer (torch.optim.Optimizer): the current optimizer function. curr_training_states (dict): the dictionary containing the current training states. """ super().processAfterTraining(task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states) importances = {name: torch.zeros_like(p) for name, p in curr_model.named_parameters()} train_loader = self.prepareLoader(curr_dataset, curr_training_states)[0] total_num_items = 0 for i, _curr_batch in enumerate(iter(train_loader)): curr_model.zero_grad() curr_results = self.inference(curr_model, _curr_batch, curr_training_states) (torch.linalg.norm(curr_results['preds'], dim=-1) ** 2).mean().backward() curr_num_items =_curr_batch[1].shape[0] total_num_items += curr_num_items for name, p in curr_model.named_parameters(): curr_training_states['params'][name] = p.data.clone().detach() importances[name] += p.grad.data.clone().detach().abs() * curr_num_items for name, p in curr_model.named_parameters(): curr_training_states['importances'][name] += (importances[name] / total_num_items)
[docs]class GCDomainILMASTrainer(GCClassILMASTrainer): """ This trainer has the same behavior as `GCClassILMASTrainer`. """ pass
[docs]class GCTimeILMASTrainer(GCClassILMASTrainer): """ This trainer has the same behavior as `GCClassILMASTrainer`. """ pass