Source code for begin.algorithms.twp.graphs

import torch
import torch.nn.functional as F
from begin.trainers.graphs import GCTrainer

[docs]class GCTaskILTWPTrainer(GCTrainer): def __init__(self, model, scenario, optimizer_fn, loss_fn, device, **kwargs): """ TWP needs three additional parameters `lambda_l`, `lambda_t`, and `beta`. `lambda_l` is the hyperparamter for the regularization term (similar to EWC) used in :func:`afterInference`. `lambda_t` is the hyperparamter for the regularization term (with topological information) used in :func:`afterInference`. `beta` is the hyperparameter for the regularization term related to `cur_importance_score` in :func:`afterInference`. """ super().__init__(model.to(device), scenario, optimizer_fn, loss_fn, device, **kwargs) self.lambda_l = kwargs['lambda_l'] if 'lambda_l' in kwargs else 10000 self.lambda_t = kwargs['lambda_t'] if 'lambda_t' in kwargs else 10000 self.beta = kwargs['beta'] if 'beta' in kwargs else 0.1
[docs] def inference(self, model, _curr_batch, training_states, return_elist=False): """ The event function to execute inference step. For task-IL, we need to additionally consider task information for the inference step. TWP requires edge weights computed by attention mechanism. Args: model (torch.nn.Module): the current trained model. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the inference results, such as prediction result and loss. """ graphs, labels, masks = _curr_batch preds = model(graphs.to(self.device), graphs.ndata['feat'].to(self.device) if 'feat' in graphs.ndata else None, edge_attr = graphs.edata['feat'].to(self.device) if 'feat' in graphs.edata else None, edge_weight = graphs.edata['weight'].to(self.device) if 'weight' in graphs.edata else None, return_elist = return_elist, task_masks = masks) if return_elist: preds, elist = preds loss = self.loss_fn(preds, labels.to(self.device)) return {'preds': preds, 'loss': loss, 'elist': elist if return_elist else None}
[docs] def afterInference(self, results, model, optimizer, _curr_batch, training_states): """ The event function to execute some processes right after the inference step (for training). We recommend performing backpropagation in this event function. TWP performs regularization process in this function. Args: results (dict): the returned dictionary from the event function `inference`. model (torch.nn.Module): the current trained model. optimizer (torch.optim.Optimizer): the current optimizer function. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the information from the `results`. """ cls_loss = results['loss'] cls_loss.backward(retain_graph=True) cur_importance_score = 0. for gs in model.parameters(): cur_importance_score += torch.norm(gs.grad.data.clone(), p=1) old_importance_score = 0. for tt in range(0, training_states['current_task']): for i, p in enumerate(model.parameters()): I_n = self.lambda_l * training_states['cls_important_score'][tt][i] + self.lambda_t * training_states['topology_important_score'][tt][i] I_n = I_n * (p - training_states['optpar'][tt][i]).pow(2) old_importance_score += I_n.sum() cls_loss += old_importance_score + self.beta * cur_importance_score cls_loss.backward() optimizer.step() return {'_num_items': results['preds'].shape[0], 'loss': results['loss'].item(), 'acc': self.eval_fn(self.predictionFormat(results), _curr_batch[1].to(self.device))}
[docs] def initTrainingStates(self, scenario, model, optimizer): return {'current_task':0, 'fisher_loss':{}, 'fisher_att':{}, 'optpar':{}, 'mem_mask':None, 'cls_important_score':{}, 'topology_important_score':{}}
[docs] def processAfterTraining(self, task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states): """ The event function to execute some processes after training the current task. TWP computes weights for regularization process and stores the learned weights in this function. Args: task_id (int): the index of the current task. curr_dataset (object): The dataset for the current task. curr_model (torch.nn.Module): the current trained model. curr_optimizer (torch.optim.Optimizer): the current optimizer function. curr_training_states (dict): the dictionary containing the current training states. """ curr_model.load_state_dict(curr_training_states['best_weights']) optpars = [None for (name, p) in curr_model.named_parameters()] cls_scores = [torch.zeros_like(p.data) for (name, p) in curr_model.named_parameters()] topology_scores = [torch.zeros_like(p.data) for (name, p) in curr_model.named_parameters()] train_loader = self.prepareLoader(curr_dataset, curr_training_states)[0] total_num_items = 0 for i, _curr_batch in enumerate(iter(train_loader)): curr_model.zero_grad() results = self.inference(curr_model, _curr_batch, curr_training_states, return_elist=True) results['loss'].backward(retain_graph=True) curr_sz = results['preds'].shape[0] total_num_items += curr_sz for idx, (name, p) in enumerate(curr_model.named_parameters()): optpars[idx] = p.data.clone().detach() cls_scores[idx] += p.grad.data.clone().pow(2).detach() * curr_sz eloss = torch.norm(results['elist'][0]) eloss.backward() for idx, (name, p) in enumerate(curr_model.named_parameters()): topology_scores[idx] += p.grad.data.clone().pow(2).detach() * curr_sz for idx, (name, p) in enumerate(curr_model.named_parameters()): cls_scores[idx] /= total_num_items topology_scores[idx] /= total_num_items _idx = curr_training_states['current_task'] curr_training_states['cls_important_score'][_idx] = cls_scores curr_training_states['topology_important_score'][_idx] = topology_scores curr_training_states['optpar'][_idx] = optpars curr_training_states['current_task'] += 1
[docs]class GCClassILTWPTrainer(GCTrainer): def __init__(self, model, scenario, optimizer_fn, loss_fn, device, **kwargs): """ TWP needs three additional parameters `lambda_l`, `lambda_t`, and `beta`. `lambda_l` is the hyperparamter for the regularization term (similar to EWC) used in :func:`afterInference`. `lambda_t` is the hyperparamter for the regularization term (with topological information) used in :func:`afterInference`. `beta` is the hyperparameter for the regularization term related to `cur_importance_score` in :func:`afterInference`. """ super().__init__(model.to(device), scenario, optimizer_fn, loss_fn, device, **kwargs) self.lambda_l = kwargs['lambda_l'] if 'lambda_l' in kwargs else 10000 self.lambda_t = kwargs['lambda_t'] if 'lambda_t' in kwargs else 10000 self.beta = kwargs['beta'] if 'beta' in kwargs else 0.1
[docs] def inference(self, model, _curr_batch, training_states, return_elist=False): """ The event function to execute inference step. TWP requires edge weights computed by attention mechanism. Args: model (torch.nn.Module): the current trained model. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the inference results, such as prediction result and loss. """ graphs, labels = _curr_batch preds = model(graphs.to(self.device), graphs.ndata['feat'].to(self.device) if 'feat' in graphs.ndata else None, edge_attr = graphs.edata['feat'].to(self.device) if 'feat' in graphs.edata else None, edge_weight = graphs.edata['weight'].to(self.device) if 'weight' in graphs.edata else None, return_elist = return_elist) if return_elist: preds, elist = preds loss = self.loss_fn(preds, labels.to(self.device)) return {'preds': preds, 'loss': loss, 'elist': elist if return_elist else None}
[docs] def afterInference(self, results, model, optimizer, _curr_batch, training_states): """ The event function to execute some processes right after the inference step (for training). We recommend performing backpropagation in this event function. TWP performs regularization process in this function. Args: results (dict): the returned dictionary from the event function `inference`. model (torch.nn.Module): the current trained model. optimizer (torch.optim.Optimizer): the current optimizer function. curr_batch (object): the data (or minibatch) for the current iteration. curr_training_states (dict): the dictionary containing the current training states. Returns: A dictionary containing the information from the `results`. """ cls_loss = results['loss'] cls_loss.backward(retain_graph=True) cur_importance_score = 0. for gs in model.parameters(): cur_importance_score += torch.norm(gs.grad.data.clone(), p=1) old_importance_score = 0. for tt in range(0, training_states['current_task']): for i, p in enumerate(model.parameters()): I_n = self.lambda_l * training_states['cls_important_score'][tt][i] + self.lambda_t * training_states['topology_important_score'][tt][i] I_n = I_n * (p - training_states['optpar'][tt][i]).pow(2) old_importance_score += I_n.sum() cls_loss += old_importance_score + self.beta * cur_importance_score cls_loss.backward() optimizer.step() return {'_num_items': results['preds'].shape[0], 'loss': results['loss'].item(), 'acc': self.eval_fn(self.predictionFormat(results), _curr_batch[1].to(self.device))}
[docs] def initTrainingStates(self, scenario, model, optimizer): return {'current_task':0, 'fisher_loss':{}, 'fisher_att':{}, 'optpar':{}, 'mem_mask':None, 'cls_important_score':{}, 'topology_important_score':{}}
[docs] def processAfterTraining(self, task_id, curr_dataset, curr_model, curr_optimizer, curr_training_states): """ The event function to execute some processes after training the current task. TWP computes weights for regularization process and stores the learned weights in this function. Args: task_id (int): the index of the current task. curr_dataset (object): The dataset for the current task. curr_model (torch.nn.Module): the current trained model. curr_optimizer (torch.optim.Optimizer): the current optimizer function. curr_training_states (dict): the dictionary containing the current training states. """ curr_model.load_state_dict(curr_training_states['best_weights']) optpars = [None for (name, p) in curr_model.named_parameters()] cls_scores = [torch.zeros_like(p.data) for (name, p) in curr_model.named_parameters()] topology_scores = [torch.zeros_like(p.data) for (name, p) in curr_model.named_parameters()] train_loader = self.prepareLoader(curr_dataset, curr_training_states)[0] total_num_items = 0 for i, _curr_batch in enumerate(iter(train_loader)): curr_model.zero_grad() results = self.inference(curr_model, _curr_batch, curr_training_states, return_elist=True) results['loss'].backward(retain_graph=True) curr_sz = results['preds'].shape[0] total_num_items += curr_sz for idx, (name, p) in enumerate(curr_model.named_parameters()): optpars[idx] = p.data.clone().detach() cls_scores[idx] += p.grad.data.clone().pow(2).detach() * curr_sz eloss = torch.norm(results['elist'][0]) eloss.backward() for idx, (name, p) in enumerate(curr_model.named_parameters()): topology_scores[idx] += p.grad.data.clone().pow(2).detach() * curr_sz for idx, (name, p) in enumerate(curr_model.named_parameters()): cls_scores[idx] /= total_num_items topology_scores[idx] /= total_num_items _idx = curr_training_states['current_task'] curr_training_states['cls_important_score'][_idx] = cls_scores curr_training_states['topology_important_score'][_idx] = topology_scores curr_training_states['optpar'][_idx] = optpars curr_training_states['current_task'] += 1
[docs]class GCDomainILTWPTrainer(GCClassILTWPTrainer): """ This trainer has the same behavior as `GCClassILTWPTrainer`. """ pass
[docs]class GCTimeILTWPTrainer(GCClassILTWPTrainer): """ This trainer has the same behavior as `GCClassILTWPTrainer`. """ pass